Links with Trivial Alexander Module and Nontrivial Milnor Invariants
نویسنده
چکیده
Cochran constructed many links with Alexander module that of the unlink and some nonvanishing Milnor invariants, using as input commutators in a free group and as an invariant the longitudes of the links. We present a different and conjecturally complete construction, that uses elementary properties of clasper surgery, and a different invariant, the tree-part of the LMO invariant. Our method also constructs links with trivial higher Alexander modules and nontrivial Milnor invariants.
منابع مشابه
Finite Type Invariants and Milnor Invariants for Brunnian Links
A link L in the 3-sphere is called Brunnian if every proper sublink of L is trivial. In a previous paper, the first author proved that the restriction to Brunnian links of any Goussarov-Vassiliev finite type invariant of (n + 1)component links of degree < 2n is trivial. The purpose of this paper is to study the first nontrivial case. We show that the restriction of an invariant of degree 2n to ...
متن کاملSelf Delta-equivalence for Links Whose Milnor’s Isotopy Invariants Vanish
For an n-component link, Milnor’s isotopy invariants are defined for each multi-index I = i1i2...im (ij ∈ {1, ..., n}). Here m is called the length. Let r(I) denote the maximum number of times that any index appears in I. It is known that Milnor invariants with r = 1, i.e., Milnor invariants for all multi-indices I with r(I) = 1, are link-homotopy invariant. N. Habegger and X. S. Lin showed tha...
متن کاملAn Approach to Homotopy Classification of Links
A reformulation and refinement of the ¿t-invariants of Milnor are used to give a homotopy classification of 4 component links and suggest a possible general homotopy classification. The main idea is to use the (reduced) group of a link and its "geometric" automorphisms to define the precise indeterminacy of these invariants. Introduction. In 1954, Milnor [M] introduced the concept of link homot...
متن کاملSkein relations for Milnor’s μ-invariants
The theory of link-homotopy, introduced by Milnor, is an important part of the knot theory, with Milnor’s μ̄-invariants being the basic set of link-homotopy invariants. Skein relations for knot and link invariants played a crucial role in the recent developments of knot theory. However, while skein relations for Alexander and Jones invariants are known for quite a while, a similar treatment of M...
متن کاملThe Fourth Skein Module and the Montesinos-nakanishi Conjecture for 3-algebraic Links
We study the concept of the fourth skein module of 3-manifolds, that is a skein module based on the skein relation b0L0 + b1L1 + b2L2 + b3L3 = 0 and a framing relation L = aL (a, b0, b3 invertible). We give necessary conditions for trivial links to be linearly independent in the module. We investigate the behavior of elements of the skein module under the n-move and compute the values for (2, n...
متن کامل